Cargando…
Random-effects meta-analysis of effect sizes as a unified framework for gene set analysis
Gene set analysis (GSA) remains a common step in genome-scale studies because it can reveal insights that are not apparent from results obtained for individual genes. Many different computational tools are applied for GSA, which may be sensitive to different types of signals; however, most methods i...
Autores principales: | Makrooni, Mohammad A., O’Shea, Dónal, Geeleher, Paul, Seoighe, Cathal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576052/ https://www.ncbi.nlm.nih.gov/pubmed/36197939 http://dx.doi.org/10.1371/journal.pcbi.1010278 |
Ejemplares similares
-
Bias and inconsistency in the estimation of tumour mutation burden
por: Makrooni, Mohammad A., et al.
Publicado: (2022) -
Seq-ing improved gene expression estimates from microarrays using machine learning
por: Korir, Paul K., et al.
Publicado: (2015) -
Controlling for background genetic effects using polygenic scores improves the power of genome-wide association studies
por: Bennett, Declan, et al.
Publicado: (2021) -
The regulatory effect of miRNAs is a heritable genetic trait in humans
por: Geeleher, Paul, et al.
Publicado: (2012) -
Investigating the effect of paralogs on microarray gene-set analysis
por: Faure, Andre J, et al.
Publicado: (2011)