Cargando…

Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois

Our objective is to improve local decision-making for strategies to end the HIV epidemic using the newly developed Levers of HIV agent-based model (ABM). Agent-based models use computer simulations that incorporate heterogeneity in individual behaviors and interactions, allow emergence of systemic b...

Descripción completa

Detalles Bibliográficos
Autores principales: Vermeer, Wouter, Gurkan, Can, Hjorth, Arthur, Benbow, Nanette, Mustanski, Brian M., Kern, David, Brown, C. Hendricks, Wilensky, Uri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576079/
https://www.ncbi.nlm.nih.gov/pubmed/36251657
http://dx.doi.org/10.1371/journal.pone.0274288
_version_ 1784811452293447680
author Vermeer, Wouter
Gurkan, Can
Hjorth, Arthur
Benbow, Nanette
Mustanski, Brian M.
Kern, David
Brown, C. Hendricks
Wilensky, Uri
author_facet Vermeer, Wouter
Gurkan, Can
Hjorth, Arthur
Benbow, Nanette
Mustanski, Brian M.
Kern, David
Brown, C. Hendricks
Wilensky, Uri
author_sort Vermeer, Wouter
collection PubMed
description Our objective is to improve local decision-making for strategies to end the HIV epidemic using the newly developed Levers of HIV agent-based model (ABM). Agent-based models use computer simulations that incorporate heterogeneity in individual behaviors and interactions, allow emergence of systemic behaviors, and extrapolate into the future. The Levers of HIV model (LHM) uses Chicago neighborhood demographics, data on sex-risk behaviors and sexual networks, and data on the prevention and care cascades, to model local dynamics. It models the impact of changes in local preexposure prophylaxis (PrEP) and antiretroviral treatment (ART) (ie, levers) for meeting Illinois’ goal of “Getting to Zero” (GTZ) —reducing by 90% new HIV infections among men who have sex with men (MSM) by 2030. We simulate a 15-year period (2016-2030) for 2304 distinct scenarios based on 6 levers related to HIV treatment and prevention: (1) linkage to PrEP for those testing negative, (2) linkage to ART for those living with HIV, (3) adherence to PrEP, (4) viral suppression by means of ART, (5) PrEP retention, and (6) ART retention. Using tree-based methods, we identify the best scenarios at achieving a 90% HIV infection reduction by 2030. The optimal scenario consisted of the highest levels of ART retention and PrEP adherence, next to highest levels of PrEP retention, and moderate levels of PrEP linkage, achieved 90% reduction by 2030 in 58% of simulations. We used Bayesian posterior predictive distributions based on our simulated results to determine the likelihood of attaining 90% HIV infection reduction using the most recent Chicago Department of Public Health surveillance data and found that projections of the current rate of decline (2016-2019) would not achieve the 90% (p = 0.0006) reduction target for 2030. Our results suggest that increases are needed at all steps of the PrEP cascade, combined with increases in retention in HIV care, to approach 90% reduction in new HIV diagnoses by 2030. These findings show how simulation modeling with local data can guide policy makers to identify and invest in efficient care models to achieve long-term local goals of ending the HIV epidemic.
format Online
Article
Text
id pubmed-9576079
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-95760792022-10-18 Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois Vermeer, Wouter Gurkan, Can Hjorth, Arthur Benbow, Nanette Mustanski, Brian M. Kern, David Brown, C. Hendricks Wilensky, Uri PLoS One Research Article Our objective is to improve local decision-making for strategies to end the HIV epidemic using the newly developed Levers of HIV agent-based model (ABM). Agent-based models use computer simulations that incorporate heterogeneity in individual behaviors and interactions, allow emergence of systemic behaviors, and extrapolate into the future. The Levers of HIV model (LHM) uses Chicago neighborhood demographics, data on sex-risk behaviors and sexual networks, and data on the prevention and care cascades, to model local dynamics. It models the impact of changes in local preexposure prophylaxis (PrEP) and antiretroviral treatment (ART) (ie, levers) for meeting Illinois’ goal of “Getting to Zero” (GTZ) —reducing by 90% new HIV infections among men who have sex with men (MSM) by 2030. We simulate a 15-year period (2016-2030) for 2304 distinct scenarios based on 6 levers related to HIV treatment and prevention: (1) linkage to PrEP for those testing negative, (2) linkage to ART for those living with HIV, (3) adherence to PrEP, (4) viral suppression by means of ART, (5) PrEP retention, and (6) ART retention. Using tree-based methods, we identify the best scenarios at achieving a 90% HIV infection reduction by 2030. The optimal scenario consisted of the highest levels of ART retention and PrEP adherence, next to highest levels of PrEP retention, and moderate levels of PrEP linkage, achieved 90% reduction by 2030 in 58% of simulations. We used Bayesian posterior predictive distributions based on our simulated results to determine the likelihood of attaining 90% HIV infection reduction using the most recent Chicago Department of Public Health surveillance data and found that projections of the current rate of decline (2016-2019) would not achieve the 90% (p = 0.0006) reduction target for 2030. Our results suggest that increases are needed at all steps of the PrEP cascade, combined with increases in retention in HIV care, to approach 90% reduction in new HIV diagnoses by 2030. These findings show how simulation modeling with local data can guide policy makers to identify and invest in efficient care models to achieve long-term local goals of ending the HIV epidemic. Public Library of Science 2022-10-17 /pmc/articles/PMC9576079/ /pubmed/36251657 http://dx.doi.org/10.1371/journal.pone.0274288 Text en © 2022 Vermeer et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Vermeer, Wouter
Gurkan, Can
Hjorth, Arthur
Benbow, Nanette
Mustanski, Brian M.
Kern, David
Brown, C. Hendricks
Wilensky, Uri
Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois
title Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois
title_full Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois
title_fullStr Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois
title_full_unstemmed Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois
title_short Agent-based model projections for reducing HIV infection among MSM: Prevention and care pathways to end the HIV epidemic in Chicago, Illinois
title_sort agent-based model projections for reducing hiv infection among msm: prevention and care pathways to end the hiv epidemic in chicago, illinois
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576079/
https://www.ncbi.nlm.nih.gov/pubmed/36251657
http://dx.doi.org/10.1371/journal.pone.0274288
work_keys_str_mv AT vermeerwouter agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois
AT gurkancan agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois
AT hjortharthur agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois
AT benbownanette agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois
AT mustanskibrianm agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois
AT kerndavid agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois
AT brownchendricks agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois
AT wilenskyuri agentbasedmodelprojectionsforreducinghivinfectionamongmsmpreventionandcarepathwaystoendthehivepidemicinchicagoillinois