Cargando…
Event-Based Clinical Finding Extraction from Radiology Reports with Pre-trained Language Model
Radiology reports contain a diverse and rich set of clinical abnormalities documented by radiologists during their interpretation of the images. Comprehensive semantic representations of radiological findings would enable a wide range of secondary use applications to support diagnosis, triage, outco...
Autores principales: | Lau, Wilson, Lybarger, Kevin, Gunn, Martin L., Yetisgen, Meliha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576130/ https://www.ncbi.nlm.nih.gov/pubmed/36253581 http://dx.doi.org/10.1007/s10278-022-00717-5 |
Ejemplares similares
-
Extracting COVID-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework
por: Lybarger, Kevin, et al.
Publicado: (2021) -
Tumor information extraction in radiology reports for hepatocellular
carcinoma patients
por: Yim, Wen-wai, et al.
Publicado: (2016) -
Using voice to create inpatient progress notes: effects on note timeliness, quality, and physician satisfaction
por: Payne, Thomas H, et al.
Publicado: (2018) -
Knowledge-enhanced visual-language pre-training on chest radiology images
por: Zhang, Xiaoman, et al.
Publicado: (2023) -
Extracting Actionable Findings of Appendicitis from Radiology Reports Using Natural Language Processing
por: Rink, Bryan, et al.
Publicado: ( 201)