Cargando…
[Formula: see text] VAE: a stochastic process prior for Bayesian deep learning with MCMC
Stochastic processes provide a mathematically elegant way to model complex data. In theory, they provide flexible priors over function classes that can encode a wide range of interesting assumptions. However, in practice efficient inference by optimisation or marginalisation is difficult, a problem...
Autores principales: | Mishra, Swapnil, Flaxman, Seth, Berah, Tresnia, Zhu, Harrison, Pakkanen, Mikko, Bhatt, Samir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576140/ https://www.ncbi.nlm.nih.gov/pubmed/36276409 http://dx.doi.org/10.1007/s11222-022-10151-w |
Ejemplares similares
-
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
por: Semenova, Elizaveta, et al.
Publicado: (2022) -
Unifying incidence and prevalence under a time-varying general branching process
por: Pakkanen, Mikko S., et al.
Publicado: (2023) -
Observation of B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] and B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] decays
por: Tumasyan, A., et al.
Publicado: (2022) -
[Formula: see text] rule, [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] models with FCNC quark couplings
por: Buras, Andrzej J., et al.
Publicado: (2014) -
Bayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes
por: Natesan, Prathiba, et al.
Publicado: (2016)