Cargando…
Motion artifacts removal and evaluation techniques for functional near-infrared spectroscopy signals: A review
With the emergence of an increasing number of functional near-infrared spectroscopy (fNIRS) devices, the significant deterioration in measurement caused by motion artifacts has become an essential research topic for fNIRS applications. However, a high requirement for mathematics and programming limi...
Autores principales: | Huang, Ruisen, Hong, Keum-Shik, Yang, Dalin, Huang, Guanghao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576156/ https://www.ncbi.nlm.nih.gov/pubmed/36263362 http://dx.doi.org/10.3389/fnins.2022.878750 |
Ejemplares similares
-
Decoding Three Different Preference Levels of Consumers Using Convolutional Neural Network: A Functional Near-Infrared Spectroscopy Study
por: Qing, Kunqiang, et al.
Publicado: (2021) -
Detection of Mild Cognitive Impairment Using Convolutional Neural Network: Temporal-Feature Maps of Functional Near-Infrared Spectroscopy
por: Yang, Dalin, et al.
Publicado: (2020) -
A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopy
por: Cooper, Robert J., et al.
Publicado: (2012) -
Deep learning-based motion artifact removal in functional near-infrared spectroscopy
por: Gao, Yuanyuan, et al.
Publicado: (2022) -
Reduction of Onset Delay in Functional Near-Infrared Spectroscopy: Prediction of HbO/HbR Signals
por: Zafar, Amad, et al.
Publicado: (2020)