Cargando…
Enabling effective breathing sound analysis for automated diagnosis of lung diseases
With the emergence of the COVID-19 pandemic, early diagnosis of lung diseases has attracted growing attention. Generally, monitoring the breathing sound is the traditional means for assessing the status of a patient's respiratory health through auscultation; for that a stethoscope is one of the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576264/ https://www.ncbi.nlm.nih.gov/pubmed/36275046 http://dx.doi.org/10.1016/j.smhl.2022.100329 |
Sumario: | With the emergence of the COVID-19 pandemic, early diagnosis of lung diseases has attracted growing attention. Generally, monitoring the breathing sound is the traditional means for assessing the status of a patient's respiratory health through auscultation; for that a stethoscope is one of the clinical tools used by physicians for diagnosis of lung disease and anomalies. On the other hand, recent technological advances have made telehealth systems a practical and effective option for health status assessment and remote patient monitoring. The interest in telehealth solutions have further grown with the COVID-19 pandemic. These telehealth systems aim to provide increased safety and help to cope with the massive growth in healthcare demand. Particularly, employing acoustic sensors to collect breathing sound would enable real-time assessment and instantaneous detection of anomalies. However, existing work focuses on autonomous determination of respiratory rate which is not suitable for anomaly detection due to inability to deal with noisy data recording. This paper presents a novel approach for effective breathing sound analysis. We promote a new segmentation mechanism of the captured acoustic signals to identify breathing cycles in recorded sound signals. A scoring scheme is applied to qualify the segment based on the targeted respiratory illness by the overall breathing sound analysis. We demonstrate the effectiveness of our approach via experiments using published COPD datasets. |
---|