Cargando…
Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19
Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576306/ https://www.ncbi.nlm.nih.gov/pubmed/36263038 http://dx.doi.org/10.3389/fimmu.2022.967737 |
_version_ | 1784811495788380160 |
---|---|
author | Rigamonti, Alessandra Castagna, Alessandra Viatore, Marika Colombo, Federico Simone Terzoli, Sara Peano, Clelia Marchesi, Federica Locati, Massimo |
author_facet | Rigamonti, Alessandra Castagna, Alessandra Viatore, Marika Colombo, Federico Simone Terzoli, Sara Peano, Clelia Marchesi, Federica Locati, Massimo |
author_sort | Rigamonti, Alessandra |
collection | PubMed |
description | Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context. |
format | Online Article Text |
id | pubmed-9576306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95763062022-10-18 Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19 Rigamonti, Alessandra Castagna, Alessandra Viatore, Marika Colombo, Federico Simone Terzoli, Sara Peano, Clelia Marchesi, Federica Locati, Massimo Front Immunol Immunology Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context. Frontiers Media S.A. 2022-10-03 /pmc/articles/PMC9576306/ /pubmed/36263038 http://dx.doi.org/10.3389/fimmu.2022.967737 Text en Copyright © 2022 Rigamonti, Castagna, Viatore, Colombo, Terzoli, Peano, Marchesi and Locati https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Rigamonti, Alessandra Castagna, Alessandra Viatore, Marika Colombo, Federico Simone Terzoli, Sara Peano, Clelia Marchesi, Federica Locati, Massimo Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19 |
title | Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19 |
title_full | Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19 |
title_fullStr | Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19 |
title_full_unstemmed | Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19 |
title_short | Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19 |
title_sort | distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and covid-19 |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576306/ https://www.ncbi.nlm.nih.gov/pubmed/36263038 http://dx.doi.org/10.3389/fimmu.2022.967737 |
work_keys_str_mv | AT rigamontialessandra distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 AT castagnaalessandra distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 AT viatoremarika distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 AT colombofedericosimone distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 AT terzolisara distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 AT peanoclelia distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 AT marchesifederica distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 AT locatimassimo distinctresponsesofnewlyidentifiedmonocytesubsetstoadvancedgastrointestinalcancerandcovid19 |