Cargando…
A Self-Adjusting Search Domain Method-Based Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem
As a nondeterministic polynomial (NP) problem, the flexible job shop scheduling problem (FJSP) is a difficult problem to be solved in terms of finding an acceptable solution. In last decades, genetic algorithm (GA) displays very promising performance in the field. In this article, a hybrid algorithm...
Autores principales: | Li, Bin, Xia, Xuewen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576347/ https://www.ncbi.nlm.nih.gov/pubmed/36262613 http://dx.doi.org/10.1155/2022/4212556 |
Ejemplares similares
-
An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem
por: Meng, Leilei, et al.
Publicado: (2023) -
Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems
por: Shi, Xiaoqiu, et al.
Publicado: (2020) -
A global-local neighborhood search algorithm and tabu search for flexible job shop scheduling problem
por: Escamilla Serna, Nayeli Jazmin, et al.
Publicado: (2021) -
Hybrid Quantum Annealing Heuristic Method for Solving Job Shop Scheduling Problem
por: Kurowski, Krzysztof, et al.
Publicado: (2020) -
A New Frequency Analysis Operator for Population Improvement in Genetic Algorithms to Solve the Job Shop Scheduling Problem †
por: Viana, Monique Simplicio, et al.
Publicado: (2022)