Cargando…

NOD1 and NOD2 Are Potential Therapeutic Targets for Cancer Immunotherapy

The nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a group of intracellular proteins that are essential for controlling the host's innate immune response. The cytosolic nucleotide binding oligomerization domains 1 and 2 receptors (NOD1 and NOD2) are the most widely investigat...

Descripción completa

Detalles Bibliográficos
Autor principal: Wang, Dongjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576356/
https://www.ncbi.nlm.nih.gov/pubmed/36262606
http://dx.doi.org/10.1155/2022/2271788
Descripción
Sumario:The nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a group of intracellular proteins that are essential for controlling the host's innate immune response. The cytosolic nucleotide binding oligomerization domains 1 and 2 receptors (NOD1 and NOD2) are the most widely investigated NLRs. As pattern recognition receptors (PRRs), NOD1 and NOD2 may recognize and bind endogenous damage associated molecular patterns (DAMPs) and external pathogenic associated molecular patterns (PAMPs), directing the activation of inflammatory caspases through engaging the adaptor protein RIP2, which further activates the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, thereby mediating host innate immunity and regulating the adaptive immunity. Previous research has identified NOD1 and NOD2 as key players in inflammatory disease and host-microbial defense. Despite numerous studies claiming that NOD1 and NOD2 are linked to tumorigenesis and tumor development, it is still unclear whether NOD1 and NOD2 act as cancer's friends or foes. In this review, we focus on concluding the current research progress on the role of NOD1 and NOD2 in a variety of cancers and discussing the potential reasons for the contradicting role of NOD1 and NOD2 in cancers. This review may help better understand the role of NOD1 and NOD2 in cancer and shed light on NOD1 and NOD2 as potential therapeutic targets for tumor immunotherapy.