Cargando…
A Deep Ranking Weighted Multihashing Recommender System for Item Recommendation
Collaborative filtering (CF) techniques are used in recommender systems to provide users with specialised recommendations on social websites and in e-commerce. But they suffer from sparsity and cold start problems (CSP) and fail to interpret why they recommend a new item. A novel deep ranking weight...
Autores principales: | Kumar, Suresh, Singh, Jyoti Prakash, Jain, Vinay Kumar, Marahatta, Avinab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576357/ https://www.ncbi.nlm.nih.gov/pubmed/36262607 http://dx.doi.org/10.1155/2022/7393553 |
Ejemplares similares
-
Promoting Cold-Start Items in Recommender Systems
por: Liu, Jin-Hu, et al.
Publicado: (2014) -
Weighted Similarity and Core-User-Core-Item Based Recommendations
por: Zhang, Zhuangzhuang, et al.
Publicado: (2022) -
Detection of Abnormal Item Based on Time Intervals for Recommender Systems
por: Gao, Min, et al.
Publicado: (2014) -
A Comparative Study of Rank Aggregation Methods in Recommendation Systems
por: Bałchanowski, Michał, et al.
Publicado: (2023) -
Attenuated and normalized item-item product network for sequential recommendation
por: Di, Weiqiang, et al.
Publicado: (2022)