Cargando…
Seismic Facies Analysis Using the Multiattribute SOM-K-Means Clustering
An accurate seismic facies analysis (SFA) can provide insight into the subsurface sedimentary facies and has guiding significance for geological exploration. Many machine learning algorithms, including unsupervised, supervised, and deep learning algorithms, have been developed successfully for SFA o...
Autores principales: | Zhu, Zhaolin, Chen, Xin, Ren, Haoran, Tao, Liurong, Jiang, Jinsheng, Wang, Tong, Cheng, Mingxin, Ding, Shuaimin, Du, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576359/ https://www.ncbi.nlm.nih.gov/pubmed/36262615 http://dx.doi.org/10.1155/2022/1688233 |
Ejemplares similares
-
Multiattribute Glycan Identification and FDR Control for Glycoproteomics
por: Polasky, Daniel A., et al.
Publicado: (2022) -
Applications of the Multiattribute Decision-Making for the Development of the Tourism Industry Using Complex Intuitionistic Fuzzy Hamy Mean Operators
por: Hussain, Abrar, et al.
Publicado: (2022) -
The Facies dolorosa and the Conidae
por: Woodcock, Barry G.
Publicado: (2016) -
Clarifying the role of an unavailable distractor in human multiattribute choice
por: Cao, Yinan, et al.
Publicado: (2022) -
Research on Clustering Algorithm Based on Improved SOM Neural Network
por: Shi, Chengxiang, et al.
Publicado: (2022)