Cargando…
An Improved New Caledonian Crow Learning Algorithm for Global Function Optimization
The New Caledonian crow learning algorithm (NCCLA) is a novel metaheuristic algorithm inspired by the learning behavior of New Caledonian crows learning to make tools to obtain food. However, it suffers from the problems of easily falling into local optima and insufficient convergence accuracy and c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576361/ https://www.ncbi.nlm.nih.gov/pubmed/36262611 http://dx.doi.org/10.1155/2022/9248771 |
Sumario: | The New Caledonian crow learning algorithm (NCCLA) is a novel metaheuristic algorithm inspired by the learning behavior of New Caledonian crows learning to make tools to obtain food. However, it suffers from the problems of easily falling into local optima and insufficient convergence accuracy and convergence precision. To further improve the convergence performance of NCCLA, an improved New Caledonian crow learning algorithm (INCCLA) is proposed in this paper. By determining the parent individuals based on the cosine similarity, the juveniles are guided to search toward different ranges to maintain the population diversity; a novel hybrid mechanism of complete and incomplete learning is proposed to balance the exploration and exploitation capabilities of the algorithm; the update strategy of juveniles and parent individuals is improved to enhance the convergence speed and precision of the algorithm. The test results of the CEC2013 and CEC2020 test suites show that, compared with the original NCCLA algorithm and four of the best metaheuristics to date, INCCLA has significant advantages in terms of convergence speed, convergence precision, and stability. |
---|