Cargando…
Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform
The goal of this study is to plan and develop complete strategies to improve the performance of film industry. The primary objectives of this study are to investigate a dataset generated by a IoT application and the nature of the data forms obtained, the speed of the data arriving rate, and the requ...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576369/ https://www.ncbi.nlm.nih.gov/pubmed/36262618 http://dx.doi.org/10.1155/2022/5237252 |
_version_ | 1784811510133948416 |
---|---|
author | Meng, Yang |
author_facet | Meng, Yang |
author_sort | Meng, Yang |
collection | PubMed |
description | The goal of this study is to plan and develop complete strategies to improve the performance of film industry. The primary objectives of this study are to investigate a dataset generated by a IoT application and the nature of the data forms obtained, the speed of the data arriving rate, and the required query response time and to list the issues that the current film industry faces when attempting to handle IoT applications in real time. Finally, in film industry platforms, high performance with varied stream circulation levels of real-time IoT application information was realized. In this study, we proposed three alternative methods on top of the Storm platform, nicknamed Re-Storm, to improve the performance of IoT application data. Three different proposed strategies are (1) data stream graph optimization framework, (2) energy-efficient self-scheduling strategy, and (3) real-time data stream computing with memory DVFS. The work proposed a methodology for dealing with heterogeneous traffic-aware incoming rate of data streams Re-Storm at multiple traffic points, resulting in a short response time and great energy efficiency. It is divided into three parts, the first of which is a scientific model for fast response time and great energy efficiency. The distribution of resources is then considered using DVFS approaches, and successful optimum association methods are shown. Third is self-allocation of worker nodes towards optimizing DSG using hot swapping and making the span minimization technique. Furthermore, the testing findings suggest that Re-Storm outperforms Storm by 20–30% for real-time streaming data of IoT applications. This research focuses on high energy efficiency, short reaction time, and managing data stream traffic arrival rate. A model for a specific phase of data coming via IoT and real-time computing devices was built on top of the Storm platform. There is no need to change any software approach or hardware component in this design, but only merely add an energy-efficient and traffic-aware algorithm. The design and development of this algorithm take into account all of the needs of the data produced by IoT applications. It is an open-source platform with less prerequisites for addressing a more sophisticated big data challenge. |
format | Online Article Text |
id | pubmed-9576369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95763692022-10-18 Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform Meng, Yang Comput Intell Neurosci Research Article The goal of this study is to plan and develop complete strategies to improve the performance of film industry. The primary objectives of this study are to investigate a dataset generated by a IoT application and the nature of the data forms obtained, the speed of the data arriving rate, and the required query response time and to list the issues that the current film industry faces when attempting to handle IoT applications in real time. Finally, in film industry platforms, high performance with varied stream circulation levels of real-time IoT application information was realized. In this study, we proposed three alternative methods on top of the Storm platform, nicknamed Re-Storm, to improve the performance of IoT application data. Three different proposed strategies are (1) data stream graph optimization framework, (2) energy-efficient self-scheduling strategy, and (3) real-time data stream computing with memory DVFS. The work proposed a methodology for dealing with heterogeneous traffic-aware incoming rate of data streams Re-Storm at multiple traffic points, resulting in a short response time and great energy efficiency. It is divided into three parts, the first of which is a scientific model for fast response time and great energy efficiency. The distribution of resources is then considered using DVFS approaches, and successful optimum association methods are shown. Third is self-allocation of worker nodes towards optimizing DSG using hot swapping and making the span minimization technique. Furthermore, the testing findings suggest that Re-Storm outperforms Storm by 20–30% for real-time streaming data of IoT applications. This research focuses on high energy efficiency, short reaction time, and managing data stream traffic arrival rate. A model for a specific phase of data coming via IoT and real-time computing devices was built on top of the Storm platform. There is no need to change any software approach or hardware component in this design, but only merely add an energy-efficient and traffic-aware algorithm. The design and development of this algorithm take into account all of the needs of the data produced by IoT applications. It is an open-source platform with less prerequisites for addressing a more sophisticated big data challenge. Hindawi 2022-10-10 /pmc/articles/PMC9576369/ /pubmed/36262618 http://dx.doi.org/10.1155/2022/5237252 Text en Copyright © 2022 Yang Meng. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Meng, Yang Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform |
title | Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform |
title_full | Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform |
title_fullStr | Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform |
title_full_unstemmed | Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform |
title_short | Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform |
title_sort | analysis of performance improvement of real-time internet of things application data processing in the movie industry platform |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576369/ https://www.ncbi.nlm.nih.gov/pubmed/36262618 http://dx.doi.org/10.1155/2022/5237252 |
work_keys_str_mv | AT mengyang analysisofperformanceimprovementofrealtimeinternetofthingsapplicationdataprocessinginthemovieindustryplatform |