Cargando…

Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform

The goal of this study is to plan and develop complete strategies to improve the performance of film industry. The primary objectives of this study are to investigate a dataset generated by a IoT application and the nature of the data forms obtained, the speed of the data arriving rate, and the requ...

Descripción completa

Detalles Bibliográficos
Autor principal: Meng, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576369/
https://www.ncbi.nlm.nih.gov/pubmed/36262618
http://dx.doi.org/10.1155/2022/5237252
_version_ 1784811510133948416
author Meng, Yang
author_facet Meng, Yang
author_sort Meng, Yang
collection PubMed
description The goal of this study is to plan and develop complete strategies to improve the performance of film industry. The primary objectives of this study are to investigate a dataset generated by a IoT application and the nature of the data forms obtained, the speed of the data arriving rate, and the required query response time and to list the issues that the current film industry faces when attempting to handle IoT applications in real time. Finally, in film industry platforms, high performance with varied stream circulation levels of real-time IoT application information was realized. In this study, we proposed three alternative methods on top of the Storm platform, nicknamed Re-Storm, to improve the performance of IoT application data. Three different proposed strategies are (1) data stream graph optimization framework, (2) energy-efficient self-scheduling strategy, and (3) real-time data stream computing with memory DVFS. The work proposed a methodology for dealing with heterogeneous traffic-aware incoming rate of data streams Re-Storm at multiple traffic points, resulting in a short response time and great energy efficiency. It is divided into three parts, the first of which is a scientific model for fast response time and great energy efficiency. The distribution of resources is then considered using DVFS approaches, and successful optimum association methods are shown. Third is self-allocation of worker nodes towards optimizing DSG using hot swapping and making the span minimization technique. Furthermore, the testing findings suggest that Re-Storm outperforms Storm by 20–30% for real-time streaming data of IoT applications. This research focuses on high energy efficiency, short reaction time, and managing data stream traffic arrival rate. A model for a specific phase of data coming via IoT and real-time computing devices was built on top of the Storm platform. There is no need to change any software approach or hardware component in this design, but only merely add an energy-efficient and traffic-aware algorithm. The design and development of this algorithm take into account all of the needs of the data produced by IoT applications. It is an open-source platform with less prerequisites for addressing a more sophisticated big data challenge.
format Online
Article
Text
id pubmed-9576369
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-95763692022-10-18 Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform Meng, Yang Comput Intell Neurosci Research Article The goal of this study is to plan and develop complete strategies to improve the performance of film industry. The primary objectives of this study are to investigate a dataset generated by a IoT application and the nature of the data forms obtained, the speed of the data arriving rate, and the required query response time and to list the issues that the current film industry faces when attempting to handle IoT applications in real time. Finally, in film industry platforms, high performance with varied stream circulation levels of real-time IoT application information was realized. In this study, we proposed three alternative methods on top of the Storm platform, nicknamed Re-Storm, to improve the performance of IoT application data. Three different proposed strategies are (1) data stream graph optimization framework, (2) energy-efficient self-scheduling strategy, and (3) real-time data stream computing with memory DVFS. The work proposed a methodology for dealing with heterogeneous traffic-aware incoming rate of data streams Re-Storm at multiple traffic points, resulting in a short response time and great energy efficiency. It is divided into three parts, the first of which is a scientific model for fast response time and great energy efficiency. The distribution of resources is then considered using DVFS approaches, and successful optimum association methods are shown. Third is self-allocation of worker nodes towards optimizing DSG using hot swapping and making the span minimization technique. Furthermore, the testing findings suggest that Re-Storm outperforms Storm by 20–30% for real-time streaming data of IoT applications. This research focuses on high energy efficiency, short reaction time, and managing data stream traffic arrival rate. A model for a specific phase of data coming via IoT and real-time computing devices was built on top of the Storm platform. There is no need to change any software approach or hardware component in this design, but only merely add an energy-efficient and traffic-aware algorithm. The design and development of this algorithm take into account all of the needs of the data produced by IoT applications. It is an open-source platform with less prerequisites for addressing a more sophisticated big data challenge. Hindawi 2022-10-10 /pmc/articles/PMC9576369/ /pubmed/36262618 http://dx.doi.org/10.1155/2022/5237252 Text en Copyright © 2022 Yang Meng. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Meng, Yang
Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform
title Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform
title_full Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform
title_fullStr Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform
title_full_unstemmed Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform
title_short Analysis of Performance Improvement of Real-time Internet of Things Application Data Processing in the Movie Industry Platform
title_sort analysis of performance improvement of real-time internet of things application data processing in the movie industry platform
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576369/
https://www.ncbi.nlm.nih.gov/pubmed/36262618
http://dx.doi.org/10.1155/2022/5237252
work_keys_str_mv AT mengyang analysisofperformanceimprovementofrealtimeinternetofthingsapplicationdataprocessinginthemovieindustryplatform