Cargando…
Classification of Multiclass Histopathological Breast Images Using Residual Deep Learning
Pathologists need a lot of clinical experience and time to do the histopathological investigation. AI may play a significant role in supporting pathologists and resulting in more accurate and efficient histopathological diagnoses. Breast cancer is one of the most diagnosed cancers in women worldwide...
Autores principales: | Eltoukhy, Mohamed Meselhy, Hosny, Khalid M., Kassem, Mohamed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576372/ https://www.ncbi.nlm.nih.gov/pubmed/36262625 http://dx.doi.org/10.1155/2022/9086060 |
Ejemplares similares
-
Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review
por: Kassem, Mohamed A., et al.
Publicado: (2021) -
New fractional-order shifted Gegenbauer moments for image analysis and recognition
por: Hosny, Khalid M., et al.
Publicado: (2020) -
Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
por: Hameed, Zabit, et al.
Publicado: (2022) -
Classification of skin lesions using transfer learning and augmentation with Alex-net
por: Hosny, Khalid M., et al.
Publicado: (2019) -
A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification
por: Arshad, Mehak, et al.
Publicado: (2021)