Cargando…
The effect of missing levels of nesting in multilevel analysis
Multilevel analysis is an appropriate and powerful tool for analyzing hierarchical structure data widely applied from public health to genomic data. In practice, however, we may lose the information on multiple nesting levels in the multilevel analysis since data may fail to capture all levels of hi...
Autores principales: | Park, Seho, Chung, Yujin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576476/ https://www.ncbi.nlm.nih.gov/pubmed/36239111 http://dx.doi.org/10.5808/gi.22052 |
Ejemplares similares
-
Country-Level Assessment of Missed Opportunities for Vaccination in South Africa: Protocol for Multilevel Analysis
por: Ndwandwe, Duduzile, et al.
Publicado: (2020) -
Multiple imputation methods for missing multilevel ordinal outcomes
por: Dong, Mei, et al.
Publicado: (2023) -
Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data
por: Vidotto, Davide, et al.
Publicado: (2018) -
Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values
por: Razzaghi, Talayeh, et al.
Publicado: (2016) -
Multiple Imputation of Missing Data in Nested Case-Control and Case-Cohort Studies
por: Keogh, Ruth H., et al.
Publicado: (2018)