Cargando…

Craniofacial superimposition: a review of focus distance estimation methods and an extension to profile view photographs

Craniofacial superimposition concerns the photographic overlay of skulls and faces, for skeletal identification. As a phased method that depends on photographic optics first and anatomical comparisons second, superimposition is strongly underpinned by the physics of light travel through glass lenses...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephan, Carl N., Healy, Sean, Bultitude, Hamish, Glen, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576648/
https://www.ncbi.nlm.nih.gov/pubmed/35999320
http://dx.doi.org/10.1007/s00414-022-02871-5
Descripción
Sumario:Craniofacial superimposition concerns the photographic overlay of skulls and faces, for skeletal identification. As a phased method that depends on photographic optics first and anatomical comparisons second, superimposition is strongly underpinned by the physics of light travel through glass lenses. So that the downstream (and dependent) anatomical evaluations are not thwarted or erroneous identification decisions risked, it is critical that the optical prerequisites for valid image comparisons are met. As focus distance sets the perspective, the focus distance used for skull photography must be matched to that used at face photography, so that anatomically comparable 1:1 images are obtained. In this paper, we review the pertinent camera optics that set these nonnegotiable fundamentals and review a recently proposed method for focus distance estimation. We go beyond the original method descriptions to explain the mathematical justification for the PerspectiveX algorithm and provide an extension to profile images. This enables the first scientifically grounded use of profile view (or partial profile view) photographs in craniofacial superimposition. Proof of concept is provided by multiple worked examples of the focus distance estimation for frontal and profile view images of three of the authors at known focus distances. This innovation (1) removes longstanding trial-and-error components of present-day superimposition methods, (2) provides the first systematic and complete optical basis for image comparison in craniofacial superimposition, and (3) will enable anatomical comparison standards to be established from a valid grassroots basis where complexities of camera vantage point are removed as interfering factors.