Cargando…
Comparing three types of data-driven models for monthly evapotranspiration prediction under heterogeneous climatic conditions
Evapotranspiration is one of the most important hydro-climatological components which directly affects agricultural productions. Therefore, its forecasting is critical for water managers and irrigation planners. In this study, adaptive neuro-fuzzy inference system (ANFIS) model has been hybridized b...
Autores principales: | Aghelpour, Pouya, Varshavian, Vahid, Khodamorad Pour, Mehraneh, Hamedi, Zahra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576755/ https://www.ncbi.nlm.nih.gov/pubmed/36253432 http://dx.doi.org/10.1038/s41598-022-22272-3 |
Ejemplares similares
-
Development of global monthly dataset of CMIP6 climate variables for estimating evapotranspiration
por: Song, Young Hoon, et al.
Publicado: (2023) -
Coupling ANFIS with ant colony optimization (ACO) algorithm for 1-, 2-, and 3-days ahead forecasting of daily streamflow, a case study in Poland
por: Aghelpour, Pouya, et al.
Publicado: (2023) -
Systematic land climate and evapotranspiration biases in CMIP5 simulations
por: Mueller, B, et al.
Publicado: (2014) -
Zr@IL-Fe(3)O(4) MNPs as an efficient and green heterogeneous magnetic nanocatalyst for the one-pot three-component synthesis of highly substituted pyran derivatives under solvent-free conditions
por: Aghaei-Hashjin, Mehraneh, et al.
Publicado: (2021) -
The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh
por: Salam, Roquia, et al.
Publicado: (2020)