Cargando…
Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks
Artificial neural networks have demonstrated superiority over traditional computing architectures in tasks such as pattern classification and learning. However, they do not measure uncertainty in predictions, and hence they can make wrong predictions with high confidence, which can be detrimental fo...
Autores principales: | Sebastian, Amritanand, Pendurthi, Rahul, Kozhakhmetov, Azimkhan, Trainor, Nicholas, Robinson, Joshua A., Redwing, Joan M., Das, Saptarshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576759/ https://www.ncbi.nlm.nih.gov/pubmed/36253370 http://dx.doi.org/10.1038/s41467-022-33699-7 |
Ejemplares similares
-
Benchmarking monolayer MoS(2) and WS(2) field-effect transistors
por: Sebastian, Amritanand, et al.
Publicado: (2021) -
Gaussian synapses for probabilistic neural networks
por: Sebastian, Amritanand, et al.
Publicado: (2019) -
Hardware implementation of Bayesian network based on two-dimensional memtransistors
por: Zheng, Yikai, et al.
Publicado: (2022) -
All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors
por: Dodda, Akhil, et al.
Publicado: (2022) -
Stochastic resonance in MoS(2) photodetector
por: Dodda, Akhil, et al.
Publicado: (2020)