Cargando…

Application of AI in cardiovascular multimodality imaging

Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is foc...

Descripción completa

Detalles Bibliográficos
Autores principales: Muscogiuri, Giuseppe, Volpato, Valentina, Cau, Riccardo, Chiesa, Mattia, Saba, Luca, Guglielmo, Marco, Senatieri, Alberto, Chierchia, Gregorio, Pontone, Gianluca, Dell’Aversana, Serena, Schoepf, U. Joseph, Andrews, Mason G., Basile, Paolo, Guaricci, Andrea Igoren, Marra, Paolo, Muraru, Denisa, Badano, Luigi P., Sironi, Sandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576885/
https://www.ncbi.nlm.nih.gov/pubmed/36267381
http://dx.doi.org/10.1016/j.heliyon.2022.e10872
_version_ 1784811629364379648
author Muscogiuri, Giuseppe
Volpato, Valentina
Cau, Riccardo
Chiesa, Mattia
Saba, Luca
Guglielmo, Marco
Senatieri, Alberto
Chierchia, Gregorio
Pontone, Gianluca
Dell’Aversana, Serena
Schoepf, U. Joseph
Andrews, Mason G.
Basile, Paolo
Guaricci, Andrea Igoren
Marra, Paolo
Muraru, Denisa
Badano, Luigi P.
Sironi, Sandro
author_facet Muscogiuri, Giuseppe
Volpato, Valentina
Cau, Riccardo
Chiesa, Mattia
Saba, Luca
Guglielmo, Marco
Senatieri, Alberto
Chierchia, Gregorio
Pontone, Gianluca
Dell’Aversana, Serena
Schoepf, U. Joseph
Andrews, Mason G.
Basile, Paolo
Guaricci, Andrea Igoren
Marra, Paolo
Muraru, Denisa
Badano, Luigi P.
Sironi, Sandro
author_sort Muscogiuri, Giuseppe
collection PubMed
description Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging.
format Online
Article
Text
id pubmed-9576885
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95768852022-10-19 Application of AI in cardiovascular multimodality imaging Muscogiuri, Giuseppe Volpato, Valentina Cau, Riccardo Chiesa, Mattia Saba, Luca Guglielmo, Marco Senatieri, Alberto Chierchia, Gregorio Pontone, Gianluca Dell’Aversana, Serena Schoepf, U. Joseph Andrews, Mason G. Basile, Paolo Guaricci, Andrea Igoren Marra, Paolo Muraru, Denisa Badano, Luigi P. Sironi, Sandro Heliyon Review Article Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging. Elsevier 2022-10-05 /pmc/articles/PMC9576885/ /pubmed/36267381 http://dx.doi.org/10.1016/j.heliyon.2022.e10872 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review Article
Muscogiuri, Giuseppe
Volpato, Valentina
Cau, Riccardo
Chiesa, Mattia
Saba, Luca
Guglielmo, Marco
Senatieri, Alberto
Chierchia, Gregorio
Pontone, Gianluca
Dell’Aversana, Serena
Schoepf, U. Joseph
Andrews, Mason G.
Basile, Paolo
Guaricci, Andrea Igoren
Marra, Paolo
Muraru, Denisa
Badano, Luigi P.
Sironi, Sandro
Application of AI in cardiovascular multimodality imaging
title Application of AI in cardiovascular multimodality imaging
title_full Application of AI in cardiovascular multimodality imaging
title_fullStr Application of AI in cardiovascular multimodality imaging
title_full_unstemmed Application of AI in cardiovascular multimodality imaging
title_short Application of AI in cardiovascular multimodality imaging
title_sort application of ai in cardiovascular multimodality imaging
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576885/
https://www.ncbi.nlm.nih.gov/pubmed/36267381
http://dx.doi.org/10.1016/j.heliyon.2022.e10872
work_keys_str_mv AT muscogiurigiuseppe applicationofaiincardiovascularmultimodalityimaging
AT volpatovalentina applicationofaiincardiovascularmultimodalityimaging
AT cauriccardo applicationofaiincardiovascularmultimodalityimaging
AT chiesamattia applicationofaiincardiovascularmultimodalityimaging
AT sabaluca applicationofaiincardiovascularmultimodalityimaging
AT guglielmomarco applicationofaiincardiovascularmultimodalityimaging
AT senatierialberto applicationofaiincardiovascularmultimodalityimaging
AT chierchiagregorio applicationofaiincardiovascularmultimodalityimaging
AT pontonegianluca applicationofaiincardiovascularmultimodalityimaging
AT dellaversanaserena applicationofaiincardiovascularmultimodalityimaging
AT schoepfujoseph applicationofaiincardiovascularmultimodalityimaging
AT andrewsmasong applicationofaiincardiovascularmultimodalityimaging
AT basilepaolo applicationofaiincardiovascularmultimodalityimaging
AT guaricciandreaigoren applicationofaiincardiovascularmultimodalityimaging
AT marrapaolo applicationofaiincardiovascularmultimodalityimaging
AT murarudenisa applicationofaiincardiovascularmultimodalityimaging
AT badanoluigip applicationofaiincardiovascularmultimodalityimaging
AT sironisandro applicationofaiincardiovascularmultimodalityimaging