Cargando…
Application of AI in cardiovascular multimodality imaging
Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is foc...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576885/ https://www.ncbi.nlm.nih.gov/pubmed/36267381 http://dx.doi.org/10.1016/j.heliyon.2022.e10872 |
_version_ | 1784811629364379648 |
---|---|
author | Muscogiuri, Giuseppe Volpato, Valentina Cau, Riccardo Chiesa, Mattia Saba, Luca Guglielmo, Marco Senatieri, Alberto Chierchia, Gregorio Pontone, Gianluca Dell’Aversana, Serena Schoepf, U. Joseph Andrews, Mason G. Basile, Paolo Guaricci, Andrea Igoren Marra, Paolo Muraru, Denisa Badano, Luigi P. Sironi, Sandro |
author_facet | Muscogiuri, Giuseppe Volpato, Valentina Cau, Riccardo Chiesa, Mattia Saba, Luca Guglielmo, Marco Senatieri, Alberto Chierchia, Gregorio Pontone, Gianluca Dell’Aversana, Serena Schoepf, U. Joseph Andrews, Mason G. Basile, Paolo Guaricci, Andrea Igoren Marra, Paolo Muraru, Denisa Badano, Luigi P. Sironi, Sandro |
author_sort | Muscogiuri, Giuseppe |
collection | PubMed |
description | Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging. |
format | Online Article Text |
id | pubmed-9576885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95768852022-10-19 Application of AI in cardiovascular multimodality imaging Muscogiuri, Giuseppe Volpato, Valentina Cau, Riccardo Chiesa, Mattia Saba, Luca Guglielmo, Marco Senatieri, Alberto Chierchia, Gregorio Pontone, Gianluca Dell’Aversana, Serena Schoepf, U. Joseph Andrews, Mason G. Basile, Paolo Guaricci, Andrea Igoren Marra, Paolo Muraru, Denisa Badano, Luigi P. Sironi, Sandro Heliyon Review Article Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging. Elsevier 2022-10-05 /pmc/articles/PMC9576885/ /pubmed/36267381 http://dx.doi.org/10.1016/j.heliyon.2022.e10872 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Article Muscogiuri, Giuseppe Volpato, Valentina Cau, Riccardo Chiesa, Mattia Saba, Luca Guglielmo, Marco Senatieri, Alberto Chierchia, Gregorio Pontone, Gianluca Dell’Aversana, Serena Schoepf, U. Joseph Andrews, Mason G. Basile, Paolo Guaricci, Andrea Igoren Marra, Paolo Muraru, Denisa Badano, Luigi P. Sironi, Sandro Application of AI in cardiovascular multimodality imaging |
title | Application of AI in cardiovascular multimodality imaging |
title_full | Application of AI in cardiovascular multimodality imaging |
title_fullStr | Application of AI in cardiovascular multimodality imaging |
title_full_unstemmed | Application of AI in cardiovascular multimodality imaging |
title_short | Application of AI in cardiovascular multimodality imaging |
title_sort | application of ai in cardiovascular multimodality imaging |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576885/ https://www.ncbi.nlm.nih.gov/pubmed/36267381 http://dx.doi.org/10.1016/j.heliyon.2022.e10872 |
work_keys_str_mv | AT muscogiurigiuseppe applicationofaiincardiovascularmultimodalityimaging AT volpatovalentina applicationofaiincardiovascularmultimodalityimaging AT cauriccardo applicationofaiincardiovascularmultimodalityimaging AT chiesamattia applicationofaiincardiovascularmultimodalityimaging AT sabaluca applicationofaiincardiovascularmultimodalityimaging AT guglielmomarco applicationofaiincardiovascularmultimodalityimaging AT senatierialberto applicationofaiincardiovascularmultimodalityimaging AT chierchiagregorio applicationofaiincardiovascularmultimodalityimaging AT pontonegianluca applicationofaiincardiovascularmultimodalityimaging AT dellaversanaserena applicationofaiincardiovascularmultimodalityimaging AT schoepfujoseph applicationofaiincardiovascularmultimodalityimaging AT andrewsmasong applicationofaiincardiovascularmultimodalityimaging AT basilepaolo applicationofaiincardiovascularmultimodalityimaging AT guaricciandreaigoren applicationofaiincardiovascularmultimodalityimaging AT marrapaolo applicationofaiincardiovascularmultimodalityimaging AT murarudenisa applicationofaiincardiovascularmultimodalityimaging AT badanoluigip applicationofaiincardiovascularmultimodalityimaging AT sironisandro applicationofaiincardiovascularmultimodalityimaging |