Cargando…
Multiscale generative model using regularized skip-connections and perceptual loss for anomaly detection in toxicologic histopathology
BACKGROUND: Automated anomaly detection is an important tool that has been developed for many real-world applications, including security systems, industrial inspection, and medical diagnostics. Despite extensive use of machine learning for anomaly detection in these varied contexts, it is challengi...
Autores principales: | Zehnder, Philip, Feng, Jeffrey, Fuji, Reina N., Sullivan, Ruth, Hu, Fangyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576973/ https://www.ncbi.nlm.nih.gov/pubmed/36268071 http://dx.doi.org/10.1016/j.jpi.2022.100102 |
Ejemplares similares
-
An Approach to Improve SSD through Skip Connection of Multiscale Feature Maps
por: Zhang, Xiaoguo, et al.
Publicado: (2020) -
Multilocation and Multiscale Learning Framework with Skip Connection for Fault Diagnosis of Bearing under Complex Working Conditions
por: Ban, Hongwei, et al.
Publicado: (2021) -
Impact of color augmentation and tissue type in deep learning for hematoxylin and eosin image super resolution
por: Manuel, Cyrus, et al.
Publicado: (2022) -
R2U++: a multiscale recurrent residual U-Net with dense skip connections for medical image segmentation
por: Mubashar, Mehreen, et al.
Publicado: (2022) -
Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
por: Tang, Ta-Wei, et al.
Publicado: (2022)