Cargando…
Reporting of Artificial Intelligence Diagnostic Accuracy Studies in Pathology Abstracts: Compliance with STARD for Abstracts Guidelines
Artificial intelligence (AI) research is transforming the range tools and technologies available to pathologists, leading to potentially faster, personalized and more accurate diagnoses for patients. However, to see the use of tools for patient benefit and achieve this safely, the implementation of...
Autores principales: | McGenity, Clare, Bossuyt, Patrick, Treanor, Darren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576989/ https://www.ncbi.nlm.nih.gov/pubmed/36268103 http://dx.doi.org/10.1016/j.jpi.2022.100091 |
Ejemplares similares
-
Artificial intelligence abstracts from the European Congress of Radiology: analysis of topics and compliance with the STARD for abstracts checklist
por: Dratsch, Thomas, et al.
Publicado: (2020) -
Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol
por: Sounderajah, Viknesh, et al.
Publicado: (2021) -
STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration
por: Cohen, Jérémie F, et al.
Publicado: (2016) -
Updating standards for reporting diagnostic accuracy: the development of STARD 2015
por: Korevaar, Daniël A., et al.
Publicado: (2016) -
Reproducibility of the STARD checklist: an instrument to assess the quality of reporting of diagnostic accuracy studies
por: Smidt, Nynke, et al.
Publicado: (2006)