Cargando…

Nanomaterial-assisted CRISPR gene-engineering – A hallmark for triple-negative breast cancer therapeutics advancement

Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20–24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Farheen, Jabeen, Hosmane, Narayan S., Zhao, Ruibo, Zhao, Qingwei, Iqbal, M. Zubair, Kong, Xiangdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576993/
https://www.ncbi.nlm.nih.gov/pubmed/36267139
http://dx.doi.org/10.1016/j.mtbio.2022.100450
Descripción
Sumario:Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20–24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.