Cargando…
Effective data filtering is prerequisite for robust microbial association network construction
Microorganisms do not exist as individual population in the environment. Rather, they form complex assemblages that perform essential ecosystem functions and maintain ecosystem stability. Besides the diversity and composition of microbial communities, deciphering their potential interactions in the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577025/ https://www.ncbi.nlm.nih.gov/pubmed/36267180 http://dx.doi.org/10.3389/fmicb.2022.1016947 |
_version_ | 1784811663741943808 |
---|---|
author | Wang, Mengqi Tu, Qichao |
author_facet | Wang, Mengqi Tu, Qichao |
author_sort | Wang, Mengqi |
collection | PubMed |
description | Microorganisms do not exist as individual population in the environment. Rather, they form complex assemblages that perform essential ecosystem functions and maintain ecosystem stability. Besides the diversity and composition of microbial communities, deciphering their potential interactions in the form of association networks has attracted many microbiologists and ecologists. Much effort has been made toward the methodological development for constructing microbial association networks. However, microbial profiles suffer dramatically from zero values, which hamper accurate association network construction. In this study, we investigated the effects of zero-value issues associated with microbial association network construction. Using the TARA Oceans microbial profile as an example, different zero-value-treatment approaches were comparatively investigated using different correlation methods. The results suggested dramatic variations of correlation coefficient values for differently treated microbial profiles. Most specifically, correlation coefficients among less frequent microbial taxa were more affected, whichever method was used. Negative correlation coefficients were more problematic and sensitive to network construction, as many of them were inferred from low-overlapped microbial taxa. Consequently, microbial association networks were greatly differed. Among various approaches, we recommend sequential calculation of correlation coefficients for microbial taxa pairs by excluding paired zero values. Filling missing values with pseudo-values is not recommended. As microbial association network analyses have become a widely used technique in the field of microbial ecology and environmental science, we urge cautions be made to critically consider the zero-value issues in microbial data. |
format | Online Article Text |
id | pubmed-9577025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95770252022-10-19 Effective data filtering is prerequisite for robust microbial association network construction Wang, Mengqi Tu, Qichao Front Microbiol Microbiology Microorganisms do not exist as individual population in the environment. Rather, they form complex assemblages that perform essential ecosystem functions and maintain ecosystem stability. Besides the diversity and composition of microbial communities, deciphering their potential interactions in the form of association networks has attracted many microbiologists and ecologists. Much effort has been made toward the methodological development for constructing microbial association networks. However, microbial profiles suffer dramatically from zero values, which hamper accurate association network construction. In this study, we investigated the effects of zero-value issues associated with microbial association network construction. Using the TARA Oceans microbial profile as an example, different zero-value-treatment approaches were comparatively investigated using different correlation methods. The results suggested dramatic variations of correlation coefficient values for differently treated microbial profiles. Most specifically, correlation coefficients among less frequent microbial taxa were more affected, whichever method was used. Negative correlation coefficients were more problematic and sensitive to network construction, as many of them were inferred from low-overlapped microbial taxa. Consequently, microbial association networks were greatly differed. Among various approaches, we recommend sequential calculation of correlation coefficients for microbial taxa pairs by excluding paired zero values. Filling missing values with pseudo-values is not recommended. As microbial association network analyses have become a widely used technique in the field of microbial ecology and environmental science, we urge cautions be made to critically consider the zero-value issues in microbial data. Frontiers Media S.A. 2022-10-04 /pmc/articles/PMC9577025/ /pubmed/36267180 http://dx.doi.org/10.3389/fmicb.2022.1016947 Text en Copyright © 2022 Wang and Tu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Wang, Mengqi Tu, Qichao Effective data filtering is prerequisite for robust microbial association network construction |
title | Effective data filtering is prerequisite for robust microbial association network construction |
title_full | Effective data filtering is prerequisite for robust microbial association network construction |
title_fullStr | Effective data filtering is prerequisite for robust microbial association network construction |
title_full_unstemmed | Effective data filtering is prerequisite for robust microbial association network construction |
title_short | Effective data filtering is prerequisite for robust microbial association network construction |
title_sort | effective data filtering is prerequisite for robust microbial association network construction |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577025/ https://www.ncbi.nlm.nih.gov/pubmed/36267180 http://dx.doi.org/10.3389/fmicb.2022.1016947 |
work_keys_str_mv | AT wangmengqi effectivedatafilteringisprerequisiteforrobustmicrobialassociationnetworkconstruction AT tuqichao effectivedatafilteringisprerequisiteforrobustmicrobialassociationnetworkconstruction |