Cargando…
Improving feature extraction from histopathological images through a fine-tuning ImageNet model
BACKGROUND: Due to lack of annotated pathological images, transfer learning has been the predominant approach in the field of digital pathology. Pre-trained neural networks based on ImageNet database are often used to extract “off-the-shelf” features, achieving great success in predicting tissue typ...
Autores principales: | Li, Xingyu, Cen, Min, Xu, Jinfeng, Zhang, Hong, Xu, Xu Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577036/ https://www.ncbi.nlm.nih.gov/pubmed/36268072 http://dx.doi.org/10.1016/j.jpi.2022.100115 |
Ejemplares similares
-
Ten years after ImageNet: a 360° perspective on artificial intelligence
por: Chawla, Sanjay, et al.
Publicado: (2023) -
ImageNet-trained deep neural networks exhibit illusion-like response to the Scintillating grid
por: Sun, Eric D., et al.
Publicado: (2021) -
ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking Neural Networks
por: Lin, Yihan, et al.
Publicado: (2021) -
Deepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in medical imaging: an experimental study
por: Alzubaidi, Laith, et al.
Publicado: (2021) -
Robustness Fine-Tuning Deep Learning Model for Cancers Diagnosis Based on Histopathology Image Analysis
por: El-Ghany, Sameh Abd, et al.
Publicado: (2023)