Cargando…
Improving unsupervised stain-to-stain translation using self-supervision and meta-learning
BACKGROUND: In digital pathology, many image analysis tasks are challenged by the need for large and time-consuming manual data annotations to cope with various sources of variability in the image domain. Unsupervised domain adaptation based on image-to-image translation is gaining importance in thi...
Autores principales: | Bouteldja, Nassim, Klinkhammer, Barbara M., Schlaich, Tarek, Boor, Peter, Merhof, Dorit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577059/ https://www.ncbi.nlm.nih.gov/pubmed/36268068 http://dx.doi.org/10.1016/j.jpi.2022.100107 |
Ejemplares similares
-
Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy
por: Berijanian, Maryam, et al.
Publicado: (2023) -
Tackling stain variability using CycleGAN-based stain augmentation
por: Bouteldja, Nassim, et al.
Publicado: (2022) -
Large-scale extraction of interpretable features provides new insights into kidney histopathology – A proof-of-concept study
por: Gupta, Laxmi, et al.
Publicado: (2022) -
Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning
por: Pradhan, Pranita, et al.
Publicado: (2021) -
StainCUT: Stain Normalization with Contrastive Learning
por: Gutiérrez Pérez, José Carlos, et al.
Publicado: (2022)