Cargando…
AI-based prostate analysis system trained without human supervision to predict patient outcome from tissue samples
In order to plan the best treatment for prostate cancer patients, the aggressiveness of the tumor is graded based on visual assessment of tissue biopsies according to the Gleason scale. Recently, a number of AI models have been developed that can be trained to do this grading as well as human pathol...
Autores principales: | Walhagen, Peter, Bengtsson, Ewert, Lennartz, Maximilian, Sauter, Guido, Busch, Christer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577124/ https://www.ncbi.nlm.nih.gov/pubmed/36268078 http://dx.doi.org/10.1016/j.jpi.2022.100137 |
Ejemplares similares
-
Automatic Registration and Error Detection of Multiple Slices Using Landmarks
por: Frimmel, Hans, et al.
Publicado: (2001) -
Automated Classification of Glandular Tissue by Statistical Proximity Sampling
por: Azar, Jimmy C., et al.
Publicado: (2015) -
Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples
por: Song, Andrew H., et al.
Publicado: (2023) -
Automatic Quantification of Microvessels Using Unsupervised Image Analysis
por: Ranefall, Petter, et al.
Publicado: (1998) -
Automatic Quantification of Immunohistochemically Stained Cell Nuclei Based on Standard Reference Cells
por: Ranefall, Petter, et al.
Publicado: (1998)