Cargando…
Empowering digital pathology applications through explainable knowledge extraction tools
Exa-scale volumes of medical data have been produced for decades. In most cases, the diagnosis is reported in free text, encoding medical knowledge that is still largely unexploited. In order to allow decoding medical knowledge included in reports, we propose an unsupervised knowledge extraction sys...
Autores principales: | Marchesin, Stefano, Giachelle, Fabio, Marini, Niccolò, Atzori, Manfredo, Boytcheva, Svetla, Buttafuoco, Genziana, Ciompi, Francesco, Di Nunzio, Giorgio Maria, Fraggetta, Filippo, Irrera, Ornella, Müller, Henning, Primov, Todor, Vatrano, Simona, Silvello, Gianmaria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577130/ https://www.ncbi.nlm.nih.gov/pubmed/36268087 http://dx.doi.org/10.1016/j.jpi.2022.100139 |
Ejemplares similares
-
Modelling digital health data: The ExaMode ontology for computational pathology
por: Menotti, Laura, et al.
Publicado: (2023) -
Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations
por: Marini, Niccolò, et al.
Publicado: (2022) -
MedTAG: a portable and customizable annotation tool for biomedical documents
por: Giachelle, Fabio, et al.
Publicado: (2021) -
Building a large gene expression-cancer knowledge base with limited human annotations
por: Marchesin, Stefano, et al.
Publicado: (2023) -
Search, access, and explore life science nanopublications on the Web
por: Giachelle, Fabio, et al.
Publicado: (2021)