Cargando…
Tackling stain variability using CycleGAN-based stain augmentation
BACKGROUND: Considerable inter- and intra-laboratory stain variability exists in pathology, representing a challenge in development and application of deep learning (DL) approaches. Since tackling all sources of stain variability with manual annotation is not feasible, we here investigated and compa...
Autores principales: | Bouteldja, Nassim, Hölscher, David L., Bülow, Roman D., Roberts, Ian S.D., Coppo, Rosanna, Boor, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577138/ https://www.ncbi.nlm.nih.gov/pubmed/36268102 http://dx.doi.org/10.1016/j.jpi.2022.100140 |
Ejemplares similares
-
Improving unsupervised stain-to-stain translation using self-supervision and meta-learning
por: Bouteldja, Nassim, et al.
Publicado: (2022) -
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
Development of Road Surface Detection Algorithm Using CycleGAN-Augmented Dataset
por: Choi, Wansik, et al.
Publicado: (2021) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021) -
Comparative analysis of CycleGAN and AttentionGAN on face aging application
por: Sharma, Neha, et al.
Publicado: (2022)