Cargando…
CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy
OBJECTIVES: In radiomics, high-throughput algorithms extract objective quantitative features from medical images. In this study, we evaluated CT-based radiomics features, clinical features, in-depth learning features, and a combination of features for predicting a good pathological response (GPR) in...
Autores principales: | Lin, Qian, Wu, Hai Jun, Song, Qi Shi, Tang, Yu Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577189/ https://www.ncbi.nlm.nih.gov/pubmed/36267975 http://dx.doi.org/10.3389/fonc.2022.937277 |
Ejemplares similares
-
Delta-radiomics based on CT predicts pathologic complete response in ESCC treated with neoadjuvant immunochemotherapy and surgery
por: Li, Kaiyuan, et al.
Publicado: (2023) -
The application of radiomics in esophageal cancer: Predicting the response after neoadjuvant therapy
por: Guo, Hai, et al.
Publicado: (2023) -
PET/CT-based radiomics analysis may help to predict neoadjuvant chemotherapy outcomes in breast cancer
por: Yang, Liping, et al.
Publicado: (2022) -
Advances in efficacy prediction and monitoring of neoadjuvant immunotherapy for non-small cell lung cancer
por: Wang, Yunzhen, et al.
Publicado: (2023) -
Exploratory Study of a CT Radiomics Model for the Classification of Small Cell Lung Cancer and Non-small-Cell Lung Cancer
por: Liu, Shihe, et al.
Publicado: (2020)