Cargando…
Spatial–Temporal Synchronous Graph Transformer network (STSGT) for COVID-19 forecasting
COVID-19 has become a matter of serious concern over the last few years. It has adversely affected numerous people around the globe and has led to the loss of billions of dollars of business capital. In this paper, we propose a novel Spatial–Temporal Synchronous Graph Transformer network (STSGT) to...
Autores principales: | Banerjee, Soumyanil, Dong, Ming, Shi, Weisong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577246/ https://www.ncbi.nlm.nih.gov/pubmed/36277841 http://dx.doi.org/10.1016/j.smhl.2022.100348 |
Ejemplares similares
-
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Hourly forecasting of traffic flow rates using spatial temporal graph neural networks
por: Belt, Eline A., et al.
Publicado: (2023) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022) -
A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting
por: Li, Yulan, et al.
Publicado: (2022) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023)