Cargando…
An improved multi-input deep convolutional neural network for automatic emotion recognition
Current decoding algorithms based on a one-dimensional (1D) convolutional neural network (CNN) have shown effectiveness in the automatic recognition of emotional tasks using physiological signals. However, these recognition models usually take a single modal of physiological signal as input, and the...
Autores principales: | Chen, Peiji, Zou, Bochao, Belkacem, Abdelkader Nasreddine, Lyu, Xiangwen, Zhao, Xixi, Yi, Weibo, Huang, Zhaoyang, Liang, Jun, Chen, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577494/ https://www.ncbi.nlm.nih.gov/pubmed/36267236 http://dx.doi.org/10.3389/fnins.2022.965871 |
Ejemplares similares
-
Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI
por: Li, Penghai, et al.
Publicado: (2022) -
Corrigendum: Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI
por: Li, Penghai, et al.
Publicado: (2022) -
A comparative analysis of sleep spindle characteristics of sleep-disordered patients and normal subjects
por: Chen, Chao, et al.
Publicado: (2023) -
Automatic Facial Recognition of Williams-Beuren Syndrome Based on Deep Convolutional Neural Networks
por: Liu, Hui, et al.
Publicado: (2021) -
Hierarchical fusion detection algorithm for sleep spindle detection
por: Chen, Chao, et al.
Publicado: (2023)