Cargando…
Ammonium Formate as a Safe, Energy-Dense Electrochemical Fuel Ionic Liquid
[Image: see text] While solid and liquid energy carriers are advantageous due to their high energy density, many do not meet the efficiency requirements to outperform hydrogen. In this work, we investigate ammonium formate as an energy carrier. It can be produced economically via a simple reaction o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578050/ https://www.ncbi.nlm.nih.gov/pubmed/36277129 http://dx.doi.org/10.1021/acsenergylett.2c01826 |
_version_ | 1784811890983043072 |
---|---|
author | Schiffer, Zachary J Biswas, Sayandeep Manthiram, Karthish |
author_facet | Schiffer, Zachary J Biswas, Sayandeep Manthiram, Karthish |
author_sort | Schiffer, Zachary J |
collection | PubMed |
description | [Image: see text] While solid and liquid energy carriers are advantageous due to their high energy density, many do not meet the efficiency requirements to outperform hydrogen. In this work, we investigate ammonium formate as an energy carrier. It can be produced economically via a simple reaction of ammonia and formic acid, and it is safe to transport and store because it is solid under ambient conditions. We demonstrate an electrochemical cell that decomposes ammonium formate at 105 °C, where it is an ionic liquid. Here, hydrogen evolves at the cathode and formate oxidizes at the anode, both with ca. 100% Faradaic efficiency. Under the operating conditions, ammonia evaporates before it can oxidize; a second, modular device such as an ammonia fuel cell or combustion engine is necessary for complete oxidation. Overall, this system represents an alternative class of electrochemical fuel ionic liquids where the electrolyte is majority fuel, and it results in a modular release of hydrogen with potentially zero net-carbon emissions. |
format | Online Article Text |
id | pubmed-9578050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95780502022-10-19 Ammonium Formate as a Safe, Energy-Dense Electrochemical Fuel Ionic Liquid Schiffer, Zachary J Biswas, Sayandeep Manthiram, Karthish ACS Energy Lett [Image: see text] While solid and liquid energy carriers are advantageous due to their high energy density, many do not meet the efficiency requirements to outperform hydrogen. In this work, we investigate ammonium formate as an energy carrier. It can be produced economically via a simple reaction of ammonia and formic acid, and it is safe to transport and store because it is solid under ambient conditions. We demonstrate an electrochemical cell that decomposes ammonium formate at 105 °C, where it is an ionic liquid. Here, hydrogen evolves at the cathode and formate oxidizes at the anode, both with ca. 100% Faradaic efficiency. Under the operating conditions, ammonia evaporates before it can oxidize; a second, modular device such as an ammonia fuel cell or combustion engine is necessary for complete oxidation. Overall, this system represents an alternative class of electrochemical fuel ionic liquids where the electrolyte is majority fuel, and it results in a modular release of hydrogen with potentially zero net-carbon emissions. American Chemical Society 2022-09-06 2022-10-14 /pmc/articles/PMC9578050/ /pubmed/36277129 http://dx.doi.org/10.1021/acsenergylett.2c01826 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Schiffer, Zachary J Biswas, Sayandeep Manthiram, Karthish Ammonium Formate as a Safe, Energy-Dense Electrochemical Fuel Ionic Liquid |
title | Ammonium Formate
as a Safe, Energy-Dense Electrochemical
Fuel Ionic Liquid |
title_full | Ammonium Formate
as a Safe, Energy-Dense Electrochemical
Fuel Ionic Liquid |
title_fullStr | Ammonium Formate
as a Safe, Energy-Dense Electrochemical
Fuel Ionic Liquid |
title_full_unstemmed | Ammonium Formate
as a Safe, Energy-Dense Electrochemical
Fuel Ionic Liquid |
title_short | Ammonium Formate
as a Safe, Energy-Dense Electrochemical
Fuel Ionic Liquid |
title_sort | ammonium formate
as a safe, energy-dense electrochemical
fuel ionic liquid |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578050/ https://www.ncbi.nlm.nih.gov/pubmed/36277129 http://dx.doi.org/10.1021/acsenergylett.2c01826 |
work_keys_str_mv | AT schifferzacharyj ammoniumformateasasafeenergydenseelectrochemicalfuelionicliquid AT biswassayandeep ammoniumformateasasafeenergydenseelectrochemicalfuelionicliquid AT manthiramkarthish ammoniumformateasasafeenergydenseelectrochemicalfuelionicliquid |