Cargando…
Monte Carlo cross-validation for a study with binary outcome and limited sample size
Cross-validation (CV) is a resampling approach to evaluate machine learning models when sample size is limited. The number of all possible combinations of folds for the training data, known as CV rounds, are often very small in leave-one-out CV. Alternatively, Monte Carlo cross-validation (MCCV) can...
Autor principal: | Shan, Guogen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578204/ https://www.ncbi.nlm.nih.gov/pubmed/36253749 http://dx.doi.org/10.1186/s12911-022-02016-z |
Ejemplares similares
-
Monte Carlo and Quasi-Monte Carlo Sampling
por: Lemieux, Christiane
Publicado: (2009) -
Pedestrian counting with grid-based binary sensors based on Monte Carlo method
por: Fujii, Shuto, et al.
Publicado: (2014) -
Efficient confidence limits for adaptive one-arm two-stage clinical trials with binary endpoints
por: Shan, Guogen, et al.
Publicado: (2017) -
Validation of cross sections for Monte Carlo simulation of the photoelectric effect
por: Han, Min Cheol, et al.
Publicado: (2016) -
Monte Carlo and Quasi-Monte Carlo Methods 2008
por: L' Ecuyer, Pierre
Publicado: (2009)