Cargando…

Targeting Endocytosis  and Cell Communications  in the Tumor Immune Microenvironment

The existence of multiple endocytic pathways is well known, and their exact biological effects in tumors have been intensively investigated. Endocytosis can affect the connection between tumor cells and determine the fate of tumor cells. Many relationships between endocytosis and tumor cells have be...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Bo, Wang, Qian, Shi, Xiang, Jiang, Meixi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578241/
https://www.ncbi.nlm.nih.gov/pubmed/36258231
http://dx.doi.org/10.1186/s12964-022-00968-3
Descripción
Sumario:The existence of multiple endocytic pathways is well known, and their exact biological effects in tumors have been intensively investigated. Endocytosis can affect the connection between tumor cells and determine the fate of tumor cells. Many relationships between endocytosis and tumor cells have been elucidated, but the mechanism of endocytosis between different types of cells in tumors needs to be explored in greater depth. Endocytic receptors sense the environment and are induced by specific ligands to trigger communication between tumor and immune cells. Crosstalk in the tumor microenvironment can occur through direct contact between cell adhesion molecules or indirectly through exosomes. So a better understanding of the endocytic pathways that control cell adhesion molecules and function is expected to lead to new candidates for cancer treatment. In additional, tumor-derived exosomes may changes immune cell function, which may be a key role for tumors to evade immune detection and response. The overall understanding of exosomes through endocytosis is also expected to bring new candidates for therapeutic regulation of tumor immune microenvironment. In this case, endocytic pathways coordinate cell adhesion molecules and exosomes and can be used as targets in the tumor immune microenvironment for cancer treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12964-022-00968-3.