Cargando…
Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians
Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578561/ https://www.ncbi.nlm.nih.gov/pubmed/36267428 http://dx.doi.org/10.3389/ftox.2022.948455 |
_version_ | 1784811989001830400 |
---|---|
author | Ireland, Danielle Zhang, Siqi Bochenek, Veronica Hsieh, Jui-Hua Rabeler, Christina Meyer, Zane Collins, Eva-Maria S. |
author_facet | Ireland, Danielle Zhang, Siqi Bochenek, Veronica Hsieh, Jui-Hua Rabeler, Christina Meyer, Zane Collins, Eva-Maria S. |
author_sort | Ireland, Danielle |
collection | PubMed |
description | Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two “mechanistic control compounds” known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians. |
format | Online Article Text |
id | pubmed-9578561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95785612022-10-19 Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians Ireland, Danielle Zhang, Siqi Bochenek, Veronica Hsieh, Jui-Hua Rabeler, Christina Meyer, Zane Collins, Eva-Maria S. Front Toxicol Toxicology Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two “mechanistic control compounds” known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians. Frontiers Media S.A. 2022-10-04 /pmc/articles/PMC9578561/ /pubmed/36267428 http://dx.doi.org/10.3389/ftox.2022.948455 Text en Copyright © 2022 Ireland, Zhang, Bochenek, Hsieh, Rabeler, Meyer and Collins. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Toxicology Ireland, Danielle Zhang, Siqi Bochenek, Veronica Hsieh, Jui-Hua Rabeler, Christina Meyer, Zane Collins, Eva-Maria S. Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians |
title | Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians |
title_full | Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians |
title_fullStr | Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians |
title_full_unstemmed | Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians |
title_short | Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians |
title_sort | differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians |
topic | Toxicology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578561/ https://www.ncbi.nlm.nih.gov/pubmed/36267428 http://dx.doi.org/10.3389/ftox.2022.948455 |
work_keys_str_mv | AT irelanddanielle differencesinneurotoxicoutcomesoforganophosphoruspesticidesrevealedviamultidimensionalscreeninginadultandregeneratingplanarians AT zhangsiqi differencesinneurotoxicoutcomesoforganophosphoruspesticidesrevealedviamultidimensionalscreeninginadultandregeneratingplanarians AT bochenekveronica differencesinneurotoxicoutcomesoforganophosphoruspesticidesrevealedviamultidimensionalscreeninginadultandregeneratingplanarians AT hsiehjuihua differencesinneurotoxicoutcomesoforganophosphoruspesticidesrevealedviamultidimensionalscreeninginadultandregeneratingplanarians AT rabelerchristina differencesinneurotoxicoutcomesoforganophosphoruspesticidesrevealedviamultidimensionalscreeninginadultandregeneratingplanarians AT meyerzane differencesinneurotoxicoutcomesoforganophosphoruspesticidesrevealedviamultidimensionalscreeninginadultandregeneratingplanarians AT collinsevamarias differencesinneurotoxicoutcomesoforganophosphoruspesticidesrevealedviamultidimensionalscreeninginadultandregeneratingplanarians |