Cargando…
Longitudinal analysis of sentiment and emotion in news media headlines using automated labelling with Transformer language models
This work describes a chronological (2000–2019) analysis of sentiment and emotion in 23 million headlines from 47 news media outlets popular in the United States. We use Transformer language models fine-tuned for detection of sentiment (positive, negative) and Ekman’s six basic emotions (anger, disg...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578611/ https://www.ncbi.nlm.nih.gov/pubmed/36256658 http://dx.doi.org/10.1371/journal.pone.0276367 |