Cargando…
Longitudinal analysis of sentiment and emotion in news media headlines using automated labelling with Transformer language models
This work describes a chronological (2000–2019) analysis of sentiment and emotion in 23 million headlines from 47 news media outlets popular in the United States. We use Transformer language models fine-tuned for detection of sentiment (positive, negative) and Ekman’s six basic emotions (anger, disg...
Autores principales: | Rozado, David, Hughes, Ruth, Halberstadt, Jamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578611/ https://www.ncbi.nlm.nih.gov/pubmed/36256658 http://dx.doi.org/10.1371/journal.pone.0276367 |
Ejemplares similares
-
News headline generation based on improved decoder from transformer
por: Li, Zhengpeng, et al.
Publicado: (2022) -
New results make headline news
por: Riesselmann, K
Publicado: (2001) -
Fake news reminders and veracity labels differentially benefit memory and belief accuracy for news headlines
por: Kemp, Paige L., et al.
Publicado: (2022) -
Profiling the barriers to the spreading of news using news headlines
por: Sittar, Abdul, et al.
Publicado: (2023) -
Sentiments toward use of forest biomass for heat and power in canadian headlines
por: MacDonald, Heather, et al.
Publicado: (2023)