Cargando…
Prediction Model of Residual Neural Network for Pathological Confirmed Lymph Node Metastasis of Ovarian Cancer
PURPOSE: We want to develop a model for predicting lymph node status based on positron emission computed tomography (PET) images of untreated ovarian cancer patients. We use the feature map formed by wavelet transform and the parameters obtained by image segmentation to build the model. The model is...
Autores principales: | Yao, Huanchun, Zhang, Xinglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578811/ https://www.ncbi.nlm.nih.gov/pubmed/36267845 http://dx.doi.org/10.1155/2022/9646846 |
Ejemplares similares
-
Prediction of Lymph Node Metastasis in Superficial Esophageal Cancer Using a Pattern Recognition Neural Network
por: Chen, Han, et al.
Publicado: (2020) -
Ovarian dysgerminoma with a metastasis to para‐aortic lymph node
por: Kawase, Rieko, et al.
Publicado: (2021) -
Predictive value of pathological and immunohistochemical parameters for axillary lymph node metastasis in breast carcinoma
por: Yenidunya, Sibel, et al.
Publicado: (2011) -
Deep Convolutional Neural Network-Based Lymph Node Metastasis Prediction for Colon Cancer Using Histopathological Images
por: Kwak, Min Seob, et al.
Publicado: (2021) -
Risk Factors for Pathologically Confirmed Lymph Nodes Metastasis in Patients With Clinical T2N0M0 Stage Prostate Cancer
por: Xu, Ning, et al.
Publicado: (2020)