Cargando…

Predictive Analysis of Diabetes-Risk with Class Imbalance

Diabetes type 2 (T2DM) is a common chronic disease, increasingly leading to many complications and affecting vital organs. Hyperglycemia is the main characteristic caused by insufficient insulin secretion and poses a serious risk to human health. The objective is to construct a type-2 diabetes predi...

Descripción completa

Detalles Bibliográficos
Autores principales: ElSeddawy, Ahmed I., Karim, Faten Khalid, Hussein, Aisha Mohamed, Khafaga, Doaa Sami
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578843/
https://www.ncbi.nlm.nih.gov/pubmed/36268149
http://dx.doi.org/10.1155/2022/3078025
Descripción
Sumario:Diabetes type 2 (T2DM) is a common chronic disease, increasingly leading to many complications and affecting vital organs. Hyperglycemia is the main characteristic caused by insufficient insulin secretion and poses a serious risk to human health. The objective is to construct a type-2 diabetes prediction model with high classification accuracy. Advanced machine learning and predictive model techniques are utilized to achieve cutting-edge techniques for the early diagnosis of diabetes. This paper proposes an efficient performance model to predict and classify the minority class of type-2 diabetes. The impact of oversampling and undersampling approaches to reduce the effect of an unbalanced class has been compared to classification performance algorithms. Synthetic Minority Oversampling (SMOTE) and Tomek-links techniques are applied and examined. The outcomes were then compared to the original unbalanced dataset using an artificial neural network (ANN) predictive model. The model is compared with other state-of-the-art classifiers such as support vector machine (SVM), random forest (RF), and decision tree (DT). The tuned model had the best accuracy of 92.2%. The experimental findings clearly manifest the improvement in accuracy and evaluation metrics in terms of AUC and F1-measure using the SMOTE oversampling strategy rather than the baseline and undersampling schemes. The study recommends adopting dynamic hyperparameter optimization to further improve accuracy.