Cargando…

An exploration of error-driven learning in simple two-layer networks from a discriminative learning perspective

Error-driven learning algorithms, which iteratively adjust expectations based on prediction error, are the basis for a vast array of computational models in the brain and cognitive sciences that often differ widely in their precise form and application: they range from simple models in psychology an...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoppe, Dorothée B., Hendriks, Petra, Ramscar, Michael, van Rij, Jacolien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579095/
https://www.ncbi.nlm.nih.gov/pubmed/35032022
http://dx.doi.org/10.3758/s13428-021-01711-5
Descripción
Sumario:Error-driven learning algorithms, which iteratively adjust expectations based on prediction error, are the basis for a vast array of computational models in the brain and cognitive sciences that often differ widely in their precise form and application: they range from simple models in psychology and cybernetics to current complex deep learning models dominating discussions in machine learning and artificial intelligence. However, despite the ubiquity of this mechanism, detailed analyses of its basic workings uninfluenced by existing theories or specific research goals are rare in the literature. To address this, we present an exposition of error-driven learning – focusing on its simplest form for clarity – and relate this to the historical development of error-driven learning models in the cognitive sciences. Although historically error-driven models have been thought of as associative, such that learning is thought to combine preexisting elemental representations, our analysis will highlight the discriminative nature of learning in these models and the implications of this for the way how learning is conceptualized. We complement our theoretical introduction to error-driven learning with a practical guide to the application of simple error-driven learning models in which we discuss a number of example simulations, that are also presented in detail in an accompanying tutorial.