Cargando…
An exploration of error-driven learning in simple two-layer networks from a discriminative learning perspective
Error-driven learning algorithms, which iteratively adjust expectations based on prediction error, are the basis for a vast array of computational models in the brain and cognitive sciences that often differ widely in their precise form and application: they range from simple models in psychology an...
Autores principales: | Hoppe, Dorothée B., Hendriks, Petra, Ramscar, Michael, van Rij, Jacolien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579095/ https://www.ncbi.nlm.nih.gov/pubmed/35032022 http://dx.doi.org/10.3758/s13428-021-01711-5 |
Ejemplares similares
-
Order Matters! Influences of Linear Order on Linguistic Category Learning
por: Hoppe, Dorothée B., et al.
Publicado: (2020) -
A cognitive modeling approach to learning and using reference biases in language
por: Toth, Abigail G., et al.
Publicado: (2022) -
Analyzing the Time Course of Pupillometric Data
por: van Rij, Jacolien, et al.
Publicado: (2019) -
NDR(A): A single route model of response times in the reading aloud task based on discriminative learning
por: Hendrix, Peter, et al.
Publicado: (2019) -
Learning From Errors: Exploring the Effectiveness of Enhanced Error Messages in Learning to Program
por: Zhou, Zihe, et al.
Publicado: (2021)