Cargando…

Enhancing biodesulfurization by engineering a synthetic dibenzothiophene mineralization pathway

A synthetic dibenzothiophene (DBT) mineralization pathway has been engineered in recombinant cells of Pseudomonas azelaica Aramco J strain for its use in biodesulfurization of thiophenic compounds and crude oil. This functional pathway consists of a combination of a recombinant 4S pathway responsibl...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez, Igor, Mohamed, Magdy El-Said, García, José Luis, Díaz, Eduardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579287/
https://www.ncbi.nlm.nih.gov/pubmed/36274708
http://dx.doi.org/10.3389/fmicb.2022.987084
Descripción
Sumario:A synthetic dibenzothiophene (DBT) mineralization pathway has been engineered in recombinant cells of Pseudomonas azelaica Aramco J strain for its use in biodesulfurization of thiophenic compounds and crude oil. This functional pathway consists of a combination of a recombinant 4S pathway responsible for the conversion of DBT into 2-hydroxybiphenyl (2HBP) and a 2HBP mineralization pathway that is naturally present in the parental P. azelaica Aramco J strain. This novel approach allows overcoming one of the major bottlenecks of the biodesulfurization process, i.e., the feedback inhibitory effect of 2HBP on the 4S pathway enzymes. Resting cells-based biodesulfurization assays using DBT as a sulfur source showed that the 2HBP generated from the 4S pathway is subsequently metabolized by the cell, yielding an increase of 100% in DBT removal with respect to previously optimized Pseudomonas putida biodesulfurizing strains. Moreover, the recombinant P. azelaica Aramco J strain was able to use DBT as a carbon source, representing the best characterized biocatalyst harboring a DBT mineralization pathway and constituting a suitable candidate to develop future bioremediation/bioconversion strategies for oil-contaminated sites.