Cargando…
Machine learning for a sustainable energy future
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it demands advances — at the materials, devices and systems levels — for the efficient harvesting, storage, conversion and management of renewable energy. Energy researchers have begun to incorporate machine...
Autores principales: | Yao, Zhenpeng, Lum, Yanwei, Johnston, Andrew, Mejia-Mendoza, Luis Martin, Zhou, Xin, Wen, Yonggang, Aspuru-Guzik, Alán, Sargent, Edward H., Seh, Zhi Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579620/ https://www.ncbi.nlm.nih.gov/pubmed/36277083 http://dx.doi.org/10.1038/s41578-022-00490-5 |
Ejemplares similares
-
Designing and understanding light-harvesting devices with machine learning
por: Häse, Florian, et al.
Publicado: (2020) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
On scientific understanding with artificial intelligence
por: Krenn, Mario, et al.
Publicado: (2022) -
Self-driving laboratories: A paradigm shift in nanomedicine development
por: Hickman, Riley J., et al.
Publicado: (2023) -
Machine learning exciton dynamics
por: Häse, Florian, et al.
Publicado: (2016)