Cargando…
Variable metabolic scaling breaks the law: from ‘Newtonian’ to ‘Darwinian’ approaches
Life's size and tempo are intimately linked. The rate of metabolism varies with body mass in remarkably regular ways that can often be described by a simple power function, where the scaling exponent (b, slope in a log-linear plot) is typically less than 1. Traditional theory based on physical...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579773/ https://www.ncbi.nlm.nih.gov/pubmed/36259209 http://dx.doi.org/10.1098/rspb.2022.1605 |
Sumario: | Life's size and tempo are intimately linked. The rate of metabolism varies with body mass in remarkably regular ways that can often be described by a simple power function, where the scaling exponent (b, slope in a log-linear plot) is typically less than 1. Traditional theory based on physical constraints has assumed that b is 2/3 or 3/4, following natural law, but hundreds of studies have documented extensive, systematic variation in b. This overwhelming, law-breaking, empirical evidence is causing a paradigm shift in metabolic scaling theory and methodology from ‘Newtonian’ to ‘Darwinian’ approaches. A new wave of studies focuses on the adaptable regulation and evolution of metabolic scaling, as influenced by diverse intrinsic and extrinsic factors, according to multiple context-dependent mechanisms, and within boundary limits set by physical constraints. |
---|