Cargando…
Cardiac function unchanged following reanimation with normothermic regional perfusion in donation after circulatory death
OBJECTIVES: To determine whether hearts reanimated with normothermic regional perfusion (NRP) have clinically detectable changes in function using echocardiography comparing the prearrest and post-NRP imaging. As heart transplantation from donation after circulatory death (DCD) continues to increase...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579788/ https://www.ncbi.nlm.nih.gov/pubmed/36276687 http://dx.doi.org/10.1016/j.xjtc.2022.07.018 |
Sumario: | OBJECTIVES: To determine whether hearts reanimated with normothermic regional perfusion (NRP) have clinically detectable changes in function using echocardiography comparing the prearrest and post-NRP imaging. As heart transplantation from donation after circulatory death (DCD) continues to increase, preliminary results suggest outcomes comparable with donation after brain death. It is unknown whether the obligatory period of warm ischemia experienced during DCD withdrawal process causes immediate changes in cardiac allograft function following in situ reanimation. METHODS: We retrospectively reviewed and compared predonation with postreanimation echocardiographic findings in all DCD donors at our institution from January to October 2021. All DCD donor organs were reanimated with in situ thoracoabdominal NRP after circulatory death. Echocardiographic assessment included (1) 2-dimensional and speckle-tracking measures of chamber size and function; (2) ejection fraction; (3) fractional area change; and (4) global longitudinal strain. RESULTS: Altogether, 4 DCD heart donations were performed during the study period. Basic demographics and withdrawal ischemic time periods are reported. There were no changes in left ventricular ejection fraction and right ventricular fractional area change when comparing the predonation and the postreanimation echocardiogram. There was a minimal, nonstatistically significant decrease in left ventricular global longitudinal strain and right ventricular free-wall systolic strain in 3 of the 4 donors following reanimation. CONCLUSIONS: DCD cardiac allografts reanimated with NRP demonstrated no change in echocardiographic parameters used for a standard predonation donor heart evaluation. Findings suggest cardiac function of DCD allografts reanimated with thoracoabdominal NRP is not adversely impacted by limited period of warm ischemia following circulatory arrest. |
---|