Cargando…
CytroCell Micronized Cellulose Enhances the Structural and Thermal Properties of IntegroPectin Cross-Linked Films
[Image: see text] Added to grapefruit IntegroPectin in solution, the micronized cellulose CytroCell, coproduct of the IntegroPectin extraction via hydrodynamic cavitation, enhances the structural and thermal properties of the resulting cross-linked composite films. The films become strong but remain...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579998/ https://www.ncbi.nlm.nih.gov/pubmed/36205302 http://dx.doi.org/10.1021/acsabm.2c00658 |
Sumario: | [Image: see text] Added to grapefruit IntegroPectin in solution, the micronized cellulose CytroCell, coproduct of the IntegroPectin extraction via hydrodynamic cavitation, enhances the structural and thermal properties of the resulting cross-linked composite films. The films become strong but remain highly flexible as no transition glass temperature is observed, whereas the thermal properties are substantially improved. No organic solvent, acid, or base is used from the extraction of the pectin and cellulose biopolymers through filming their nanocomposites, thereby establishing a completely green route to a class of bio-based 2D films (and 3D scaffolds) with numerous potential applications in regenerative medicine, in tissue engineering, and in the treatment of infections. |
---|