Cargando…
AdaDiag: Adversarial Domain Adaptation of Diagnostic Prediction with Clinical Event Sequences
Early detection of heart failure (HF) can provide patients with the opportunity for more timely intervention and better disease management, as well as efficient use of healthcare resources. Recent machine learning (ML) methods have shown promising performance on diagnostic prediction using temporal...
Autores principales: | Zhang, Tianran, Chen, Muhao, Bui, Alex A.T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580228/ https://www.ncbi.nlm.nih.gov/pubmed/35987449 http://dx.doi.org/10.1016/j.jbi.2022.104168 |
Ejemplares similares
-
ADA-COVID: Adversarial Deep Domain Adaptation-Based Diagnosis of COVID-19 from Lung CT Scans Using Triplet Embeddings
por: Aria, Mehrad, et al.
Publicado: (2022) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Evaluation of the Repeatability of the LacryDiag Ocular Surface Analyzer for Assessment of the Meibomian Glands and Tear Film
por: Ward, Cameron D., et al.
Publicado: (2021) -
Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy
por: Rau, Anita, et al.
Publicado: (2019) -
Simultaneously Improve Transferability and Discriminability for Adversarial Domain Adaptation
por: Xiao, Ting, et al.
Publicado: (2021)