Cargando…

Prediction of malignant transformation in oral epithelial dysplasia using machine learning

A machine learning algorithm (MLA) has been applied to a Fourier transform infrared spectroscopy (FTIR) dataset previously analysed with a principal component analysis (PCA) linear discriminant analysis (LDA) model. This comparison has confirmed the robustness of FTIR as a prognostic tool for oral e...

Descripción completa

Detalles Bibliográficos
Autores principales: Ingham, James, Smith, Caroline I, Ellis, Barnaby G, Whitley, Conor A, Triantafyllou, Asterios, Gunning, Philip J, Barrett, Steve D, Gardener, Peter, Shaw, Richard J, Risk, Janet M, Weightman, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOP Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580266/
https://www.ncbi.nlm.nih.gov/pubmed/36277682
http://dx.doi.org/10.1088/2633-1357/ac95e2
Descripción
Sumario:A machine learning algorithm (MLA) has been applied to a Fourier transform infrared spectroscopy (FTIR) dataset previously analysed with a principal component analysis (PCA) linear discriminant analysis (LDA) model. This comparison has confirmed the robustness of FTIR as a prognostic tool for oral epithelial dysplasia (OED). The MLA is able to predict malignancy with a sensitivity of 84 ± 3% and a specificity of 79 ± 3%. It provides key wavenumbers that will be important for the development of devices that can be used for improved prognosis of OED.