Cargando…
Prediction of malignant transformation in oral epithelial dysplasia using machine learning
A machine learning algorithm (MLA) has been applied to a Fourier transform infrared spectroscopy (FTIR) dataset previously analysed with a principal component analysis (PCA) linear discriminant analysis (LDA) model. This comparison has confirmed the robustness of FTIR as a prognostic tool for oral e...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580266/ https://www.ncbi.nlm.nih.gov/pubmed/36277682 http://dx.doi.org/10.1088/2633-1357/ac95e2 |
_version_ | 1784812354743042048 |
---|---|
author | Ingham, James Smith, Caroline I Ellis, Barnaby G Whitley, Conor A Triantafyllou, Asterios Gunning, Philip J Barrett, Steve D Gardener, Peter Shaw, Richard J Risk, Janet M Weightman, Peter |
author_facet | Ingham, James Smith, Caroline I Ellis, Barnaby G Whitley, Conor A Triantafyllou, Asterios Gunning, Philip J Barrett, Steve D Gardener, Peter Shaw, Richard J Risk, Janet M Weightman, Peter |
author_sort | Ingham, James |
collection | PubMed |
description | A machine learning algorithm (MLA) has been applied to a Fourier transform infrared spectroscopy (FTIR) dataset previously analysed with a principal component analysis (PCA) linear discriminant analysis (LDA) model. This comparison has confirmed the robustness of FTIR as a prognostic tool for oral epithelial dysplasia (OED). The MLA is able to predict malignancy with a sensitivity of 84 ± 3% and a specificity of 79 ± 3%. It provides key wavenumbers that will be important for the development of devices that can be used for improved prognosis of OED. |
format | Online Article Text |
id | pubmed-9580266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | IOP Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-95802662022-10-20 Prediction of malignant transformation in oral epithelial dysplasia using machine learning Ingham, James Smith, Caroline I Ellis, Barnaby G Whitley, Conor A Triantafyllou, Asterios Gunning, Philip J Barrett, Steve D Gardener, Peter Shaw, Richard J Risk, Janet M Weightman, Peter IOP SciNotes Article A machine learning algorithm (MLA) has been applied to a Fourier transform infrared spectroscopy (FTIR) dataset previously analysed with a principal component analysis (PCA) linear discriminant analysis (LDA) model. This comparison has confirmed the robustness of FTIR as a prognostic tool for oral epithelial dysplasia (OED). The MLA is able to predict malignancy with a sensitivity of 84 ± 3% and a specificity of 79 ± 3%. It provides key wavenumbers that will be important for the development of devices that can be used for improved prognosis of OED. IOP Publishing 2022-09-01 2022-10-07 /pmc/articles/PMC9580266/ /pubmed/36277682 http://dx.doi.org/10.1088/2633-1357/ac95e2 Text en © 2022 The Author(s). Published by IOP Publishing Ltd https://creativecommons.org/licenses/by/4.0/Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence (https://creativecommons.org/licenses/by/4.0/) . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
spellingShingle | Article Ingham, James Smith, Caroline I Ellis, Barnaby G Whitley, Conor A Triantafyllou, Asterios Gunning, Philip J Barrett, Steve D Gardener, Peter Shaw, Richard J Risk, Janet M Weightman, Peter Prediction of malignant transformation in oral epithelial dysplasia using machine learning |
title | Prediction of malignant transformation in oral epithelial dysplasia using machine learning |
title_full | Prediction of malignant transformation in oral epithelial dysplasia using machine learning |
title_fullStr | Prediction of malignant transformation in oral epithelial dysplasia using machine learning |
title_full_unstemmed | Prediction of malignant transformation in oral epithelial dysplasia using machine learning |
title_short | Prediction of malignant transformation in oral epithelial dysplasia using machine learning |
title_sort | prediction of malignant transformation in oral epithelial dysplasia using machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580266/ https://www.ncbi.nlm.nih.gov/pubmed/36277682 http://dx.doi.org/10.1088/2633-1357/ac95e2 |
work_keys_str_mv | AT inghamjames predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT smithcarolinei predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT ellisbarnabyg predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT whitleyconora predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT triantafyllouasterios predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT gunningphilipj predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT barrettsteved predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT gardenerpeter predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT shawrichardj predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT riskjanetm predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning AT weightmanpeter predictionofmalignanttransformationinoralepithelialdysplasiausingmachinelearning |