Cargando…
Brain-Computer Interface using neural network and temporal-spectral features
Brain-Computer Interfaces (BCIs) are increasingly useful for control. Such BCIs can be used to assist individuals who lost mobility or control over their limbs, for recreational purposes such as gaming or semi-autonomous driving, or as an interface toward man-machine integration. Thus far, the perfo...
Autores principales: | Wang, Gan, Cerf, Moran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580359/ https://www.ncbi.nlm.nih.gov/pubmed/36277476 http://dx.doi.org/10.3389/fninf.2022.952474 |
Ejemplares similares
-
Dissociable Neural Representations of Adversarially Perturbed Images in Convolutional Neural Networks and the Human Brain
por: Zhang, Chi, et al.
Publicado: (2021) -
A Systematic Approach for Explaining Time and Frequency Features Extracted by Convolutional Neural Networks From Raw Electroencephalography Data
por: Ellis, Charles A., et al.
Publicado: (2022) -
Modeling Brain Volume Using Deep Learning-Based Physical Activity Features in Patients With Dementia
por: Park, Bumhee, et al.
Publicado: (2022) -
Recognition of Electroencephalography-Related Features of Neuronal Network Organization in Patients With Schizophrenia Using the Generalized Choquet Integrals
por: Plechawska-Wójcik, Małgorzata, et al.
Publicado: (2021) -
Corrigendum: Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks
por: Naveros, Francisco, et al.
Publicado: (2018)